Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.732
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Nutrients ; 16(5)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38474764

RESUMEN

Nanotechnology in human nutrition represents an innovative advance in increasing the bioavailability and efficiency of bioactive compounds. This work delves into the multifaceted dietary contributions of nanoparticles (NPs) and their utilization for improving nutrient absorption and ensuring food safety. NPs exhibit exceptional solubility, a significant surface-to-volume ratio, and diameters ranging from 1 to 100 nm, rendering them invaluable for applications such as tissue engineering and drug delivery, as well as elevating food quality. The encapsulation of vitamins, minerals, and antioxidants within NPs introduces an innovative approach to counteract nutritional instabilities and low solubility, promoting human health. Nanoencapsulation methods have included the production of nanocomposites, nanofibers, and nanoemulsions to benefit the delivery of bioactive food compounds. Nutrition-based nanotechnology and nanoceuticals are examined for their economic viability and potential to increase nutrient absorption. Although the advancement of nanotechnology in food demonstrates promising results, some limitations and concerns related to safety and regulation need to be widely discussed in future research. Thus, the potential of nanotechnology could open new paths for applications and significant advances in food, benefiting human nutrition.


Asunto(s)
Suplementos Dietéticos , Nanopartículas , Humanos , Antioxidantes , Vitaminas , Nanotecnología/métodos
2.
Biomed Pharmacother ; 173: 116426, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38471274

RESUMEN

In the field of cancer therapy, sesquiterpene lactones (SLs) derived from diverse Dicoma species demonstrate noteworthy bioactivity. However, the translation of their full therapeutic potential into clinical applications encounters significant challenges, primarily related to solubility, bioavailability, and precise drug targeting. Despite these obstacles, our comprehensive review introduces an innovative paradigm shift that integrates the inherent therapeutic properties of SLs with the principles of green nanotechnology. To overcome issues of solubility, bioavailability, and targeted drug delivery, eco-friendly strategies are proposed for synthesizing nanocarriers. Green nanotechnology has emerged as a focal point in addressing environmental and health concerns linked to conventional treatments. This progressive approach of green nanotechnology holds promise for the development of safe and sustainable nanomaterials, particularly in the field of drug delivery. This groundbreaking methodology signifies a pioneering advancement in the creation of novel and effective anticancer therapeutics. It holds substantial potential for transforming cancer treatment and advancing the landscape of natural product research.


Asunto(s)
Nanoestructuras , Neoplasias , Sesquiterpenos , Humanos , Neoplasias/tratamiento farmacológico , Nanotecnología/métodos , Sesquiterpenos/farmacología , Sesquiterpenos/uso terapéutico , Lactonas/uso terapéutico
3.
Int J Nanomedicine ; 19: 2507-2528, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495752

RESUMEN

Background: Cancer continues to be a prominent issue in the field of medicine, as demonstrated by recent studies emphasizing the significant role of autophagy in the development of cancer. Traditional Chinese Medicine (TCM) provides a variety of anti-tumor agents capable of regulating autophagy. However, the clinical application of autophagy-modulating compounds derived from TCM is impeded by their restricted water solubility and bioavailability. To overcome this challenge, the utilization of nanotechnology has been suggested as a potential solution. Nonetheless, the current body of literature on nanoparticles delivering TCM-derived autophagy-modulating anti-tumor compounds for cancer treatment is limited, lacking comprehensive summaries and detailed descriptions. Methods: Up to November 2023, a comprehensive research study was conducted to gather relevant data using a variety of databases, including PubMed, ScienceDirect, Springer Link, Web of Science, and CNKI. The keywords utilized in this investigation included "autophagy", "nanoparticles", "traditional Chinese medicine" and "anticancer". Results: This review provides a comprehensive analysis of the potential of nanotechnology in overcoming delivery challenges and enhancing the anti-cancer properties of autophagy-modulating compounds in TCM. The evaluation is based on a synthesis of different classes of autophagy-modulating compounds in TCM, their mechanisms of action in cancer treatment, and their potential benefits as reported in various scholarly sources. The findings indicate that nanotechnology shows potential in enhancing the availability of autophagy-modulating agents in TCM, thereby opening up a plethora of potential therapeutic avenues. Conclusion: Nanotechnology has the potential to enhance the anti-tumor efficacy of autophagy-modulating compounds in traditional TCM, through regulation of autophagy.


Asunto(s)
Medicamentos Herbarios Chinos , Neoplasias , Humanos , Medicina Tradicional China , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Nanotecnología , Autofagia
4.
Chem Soc Rev ; 53(7): 3224-3252, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38379286

RESUMEN

Neoantigens play a pivotal role in the field of tumour therapy, encompassing the stimulation of anti-tumour immune response and the enhancement of tumour targeting capability. Nonetheless, numerous factors directly influence the effectiveness of neoantigens in bolstering anti-tumour immune responses, including neoantigen quantity and specificity, uptake rates by antigen-presenting cells (APCs), residence duration within the tumour microenvironment (TME), and their ability to facilitate the maturation of APCs for immune response activation. Nanotechnology assumes a significant role in several aspects, including facilitating neoantigen release, promoting neoantigen delivery to antigen-presenting cells, augmenting neoantigen uptake by dendritic cells, shielding neoantigens from protease degradation, and optimizing interactions between neoantigens and the immune system. Consequently, the development of nanotechnology synergistically enhances the efficacy of neoantigens in cancer theranostics. In this review, we provide an overview of neoantigen sources, the mechanisms of neoantigen-induced immune responses, and the evolution of precision neoantigen-based nanomedicine. This encompasses various therapeutic modalities, such as neoantigen-based immunotherapy, phototherapy, radiotherapy, chemotherapy, chemodynamic therapy, and other strategies tailored to augment precision in cancer therapeutics. We also discuss the current challenges and prospects in the application of neoantigen-based precision nanomedicine, aiming to expedite its clinical translation.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Humanos , Antígenos de Neoplasias , Medicina de Precisión , Neoplasias/diagnóstico , Neoplasias/terapia , Inmunoterapia , Nanotecnología , Microambiente Tumoral
5.
Biomacromolecules ; 25(2): 964-974, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38232296

RESUMEN

Thermosensitive nanoparticles can be activated by externally applying heat, either through laser irradiation or magnetic fields, to trigger the release of drug payloads. This controlled release mechanism ensures that drugs are specifically released at the tumor site, maximizing their effectiveness while minimizing systemic toxicity and adverse effects. However, its efficacy is limited by the low concentration of drugs at action sites, which is caused by no specific target to tumor sties. Herein, hyaluronic acid (HA), a gooey, slippery substance with CD44-targeting ability, was conjugated with a thermosensitive polymer poly(acrylamide-co-acrylonitrile) to produce tumor-targeting and thermosensitive polymeric nanocarrier (HA-P) with an upper critical solution temperature (UCST) at 45 °C, which further coloaded chemo-drug doxorubicin (DOX) and photosensitizer Indocyanine green (ICG) to prepare thermosensitive nanoreactors HA-P/DOX&ICG. With photosensitizer ICG acting as the "temperature control element", HA-P/DOX&ICG nanoparticles can respond to temperature changes when receiving near-infrared irradiation and realize subsequent structure depolymerization for burst drug release when the ambient temperature was above 45 °C, achieving programmable and on-demand drug release for effective antitumor therapy. Tumor inhibition rate increased from 61.8 to 95.9% after laser irradiation. Furthermore, the prepared HA-P/DOX&ICG nanoparticles possess imaging properties, with ICG acting as a probe, enabling real-time monitoring of drug distribution and therapeutic response, facilitating precise treatment evaluation. These results provide enlightenment for the design of active tumor targeting and NIR-triggered programmable and on-demand drug release of thermosensitive nanoreactors for tumor therapy.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Humanos , Fármacos Fotosensibilizantes/uso terapéutico , Hipertermia Inducida/métodos , Fototerapia/métodos , Doxorrubicina/química , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Verde de Indocianina/farmacología , Verde de Indocianina/química , Nanotecnología , Liberación de Fármacos , Línea Celular Tumoral
6.
Acta Biomater ; 176: 390-404, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38244657

RESUMEN

Non-invasive precision tumor dynamic phototherapy has broad application prospects. Traditional semiconductor materials have low photocatalytic activity and low reactive oxygen species (ROS) production rate due to their wide band gap, resulting in unsatisfactory phototherapy efficacy for tumor treatment. Employing the dye-sensitization mechanism can significantly enhance the catalytic activity of the materials. We develop a multifunctional nanoplatform (BZP) by leveraging the benefits of bismuth-based semiconductor nanomaterials. BZP possesses robust ROS generation and remarkable near-infrared photothermal conversion capabilities for improving tumor immune microenvironment and achieving superior phototherapy sensitization. BZP produces highly cytotoxic ROS species via the photocatalytic process and cascade reaction, amplifying the photocatalytic therapy effect. Moreover, the simultaneous photothermal effect during the photocatalytic process facilitates the improvement of therapeutic efficacy. Additionally, BZP-mediated phototherapy can trigger the programmed death of tumor cells, stimulate dendritic cell maturation and T cell activation, modulate the tumor immune microenvironment, and augment the therapeutic effect. Hence, this study demonstrates a promising research paradigm for tumor immune microenvironment-improved phototherapy. STATEMENT OF SIGNIFICANCE: Through the utilization of dye sensitization and rare earth doping techniques, we have successfully developed a biodegradable bismuth-based semiconductor nanocatalyst (BZP). Upon optical excitation, the near-infrared dye incorporated within BZP promptly generates free electrons, which, under the influence of the Fermi energy level, undergo transfer to BiF3 within BZP, thereby facilitating the effective separation of electron-hole pairs and augmenting the catalytic capability for reactive oxygen species (ROS) generation. Furthermore, a cascade reaction mechanism generates highly cytotoxic ROS, which synergistically depletes intracellular glutathione, thereby intensifying oxidative stress. Ultimately, this dual activation strategy, combining oxidative and thermal damage, holds significant potential for tumor immunotherapy.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nanopartículas , Neoplasias , Humanos , Femenino , Neoplasias de la Mama/patología , Especies Reactivas de Oxígeno/metabolismo , Bismuto/uso terapéutico , Nanopartículas/uso terapéutico , Fototerapia/métodos , Neoplasias/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Nanotecnología , Línea Celular Tumoral , Microambiente Tumoral
7.
Angew Chem Int Ed Engl ; 63(7): e202311309, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38140920

RESUMEN

Nanomaterial-based in vivo tumor imaging and therapy have attracted extensive attention; however, they suffer from the unintelligent "always ON" or single-parameter responsive signal output, substantial off-target effects, and high cost. Therefore, achieving in vivo easy-to-read tumor imaging and precise therapy in a multi-parameter responsive and intelligent manner remains challenging. Herein, an intelligent DNA nanoreactor (iDNR) was constructed following the "AND" Boolean logic algorithm to address these issues. iDNR-mediated in situ deposition of photothermal substance polydopamine (PDA) can only be satisfied in tumor tissues with abundant membrane protein biomarkers "AND" hydrogen peroxide (H2 O2 ). Therefore, intelligent temperature-based in vivo easy-to-read tumor imaging is realized without expensive instrumentation, and its diagnostic performance matches with that of flow cytometry, and photoacoustic imaging. Moreover, precise photothermal therapy (PTT) of tumors could be achieved via intelligent heating of tumor tissues. The precise PTT of primary tumors in combination with immune checkpoint blockade (ICB) therapy suppresses the growth of distant tumors and inhibits tumor recurrence. Therefore, highly programmable iDNR is a powerful tool for intelligent biomedical applications.


Asunto(s)
Nanopartículas , Nanoestructuras , Neoplasias , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Neoplasias/patología , Fototerapia/métodos , Nanotecnología , Línea Celular Tumoral , Microambiente Tumoral
8.
Nanomedicine (Lond) ; 18(27): 2081-2099, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38078442

RESUMEN

This study reviews the application of nanotechnology and curcumin, a polyphenol extracted from turmeric, in treating digestive cancers, one of the most common types of malignancies worldwide. Despite curcumin's potential for inhibiting tumor growth, its clinical application is hindered by issues such as poor solubility and bioavailability. Nanomedicine, with its unique ability to enhance drug delivery and reduce toxicity, offers a solution to these limitations. The paper focuses on the development of nanoformulations of curcumin, such as nanoparticles and liposomes, that improve its bioavailability and efficacy in treating digestive cancers, including liver and colorectal cancers. The study serves as a valuable reference for future research and development in this promising therapeutic approach.


This article reviews the burgeoning field of nanotechnology and its applications in anticancer therapeutics, particularly focusing on the utilization of curcumin nanoparticles for the treatment of digestive cancers. With the global rise in the prevalence of digestive cancer, there is an urgent need for newer, more efficient and less toxic therapeutic strategies. Curcumin, a compound derived from turmeric, has shown considerable promise due to its broad-spectrum anticancer properties; however, its clinical application has been limited, as it is not absorbed well by the body and is cleared quickly. Nanotechnology presents a potential solution to these challenges, allowing for the enhanced delivery and therapeutic effectiveness of curcumin. This review delves into the advancements made in the field of curcumin nanoparticle research and the results of preclinical and clinical studies, focusing on digestive cancers. In addition, the challenges encountered in the development and clinical implementation of curcumin nanoparticles are addressed and a perspective on future directions in this promising area of research is provided. By combining the age-old wisdom of curcumin's therapeutic potential with the cutting-edge technology of nanomedicine, this review aims to shed light on the evolution and prospects of a novel therapeutic modality against digestive cancers.


Asunto(s)
Curcumina , Neoplasias , Humanos , Curcumina/uso terapéutico , Neoplasias/tratamiento farmacológico , Nanotecnología , Sistemas de Liberación de Medicamentos , Nanomedicina
9.
J Nanobiotechnology ; 21(1): 456, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38017573

RESUMEN

Traditional Chinese Medicines (TCMs) have been used for centuries for the treatment and management of various diseases. However, their effective delivery to targeted sites may be a major challenge due to their poor water solubility, low bioavailability, and potential toxicity. Nanocarriers, such as liposomes, polymeric nanoparticles, inorganic nanoparticles and organic/inorganic nanohybrids based on active constituents from TCMs have been extensively studied as a promising strategy to improve the delivery of active constituents from TCMs to achieve a higher therapeutic effect with fewer side effects compared to conventional formulations. This review summarizes the recent advances in nanocarrier-based delivery systems for various types of active constituents of TCMs, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones, from different natural sources. This review covers the design and preparation of nanocarriers, their characterization, and in vitro/vivo evaluations. Additionally, this review highlights the challenges and opportunities in the field and suggests future directions for research. Nanocarrier-based delivery systems have shown great potential in improving the therapeutic efficacy of TCMs, and this review may serve as a comprehensive resource to researchers in this field.


Asunto(s)
Medicamentos Herbarios Chinos , Nanopartículas , Medicamentos Herbarios Chinos/farmacología , Medicina Tradicional China , Disponibilidad Biológica , Nanotecnología , Sistemas de Liberación de Medicamentos
10.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4874-4883, 2023 Sep.
Artículo en Chino | MEDLINE | ID: mdl-37802829

RESUMEN

Rheumatoid arthritis(RA) is a widely prevalent autoimmune inflammatory disease that severely affects patients' quality of life. Currently, conventional formulations against RA have several limitations, such as nonspecificity, poor efficacy, large drug dosages, frequent administration, and systemic side effects. Nanotechnology-based drug delivery systems have emerged as a promising stra-tegy for the diagnosis and treatment of RA since nanotechnology can overcome the limitations of traditional treatments and simplify the complexity of the disease. These systems enable targeted delivery of anti-inflammatory drugs to the inflamed areas through active and passive targeting, achieving specificity to the joints, overcoming the need for increased dosage and administration frequency, and reducing associated adverse reactions. This article aimed to review nanocarrier-based drug delivery systems in the field of RA and elucidate how nanosystems can be utilized to deliver therapeutic drugs to inflamed joints for controlling RA progression. By discussing the current issues and challenges faced by nanodrug delivery systems and highlighting the urgent need for solutions, this article offers theoretical support for further research on nanotechnology-based co-delivery systems in the future.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Humanos , Calidad de Vida , Sistemas de Liberación de Medicamentos , Artritis Reumatoide/tratamiento farmacológico , Enfermedades Autoinmunes/tratamiento farmacológico , Nanotecnología
11.
Front Immunol ; 14: 1258786, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37869003

RESUMEN

In the quest for cancer treatment modalities with greater effectiveness, the combination of tumor immunotherapy and nanoparticle-based hyperthermia has emerged as a promising frontier. The present article provides a comprehensive review of recent advances and cutting-edge research in this burgeoning field and examines how these two treatment strategies can be effectively integrated. Tumor immunotherapy, which harnesses the immune system to recognize and attack cancer cells, has shown considerable promise. Concurrently, nanoparticle-based hyperthermia, which utilizes nanotechnology to promote selective cell death by raising the temperature of tumor cells, has emerged as an innovative therapeutic approach. While both strategies have individually shown potential, combination of the two modalities may amplify anti-tumor responses, with improved outcomes and reduced side effects. Key studies illustrating the synergistic effects of these two approaches are highlighted, and current challenges and future prospects in the field are discussed. As we stand on the precipice of a new era in cancer treatment, this review underscores the importance of continued research and collaboration in bringing these innovative treatments from the bench to the bedside.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Humanos , Nanotecnología , Inmunoterapia , Nanopartículas/uso terapéutico
12.
Nanoscale ; 15(43): 17313-17325, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37874212

RESUMEN

Endometriosis is a painful gynecological disease with a high prevalence, affecting millions of women worldwide. Innovative, non-invasive treatments, and new patient follow-up strategies are needed to deal with the harmful social and economic effects. In this scenario, considering the recent, very promising results already reported in the literature, a commitment to new research in the field of nanomedicine is urgently needed. Study findings clearly show the potential of this approach in both the diagnostic and therapeutic phases of endometriosis. Here, we offer a brief review of the recent exciting and effective applications of nanomedicine in both the diagnosis and therapy of endometriosis. Special emphasis will be placed on the emerging theranostic application of nanoproducts, and the combination of phototherapy and nanotechnology as new therapeutic modalities for endometriosis. The review will also provide interested readers with a guide to the selection process and parameters to consider when designing research into this type of approach.


Asunto(s)
Endometriosis , Femenino , Humanos , Endometriosis/diagnóstico , Endometriosis/terapia , Nanomedicina/métodos , Nanotecnología/métodos , Fototerapia
13.
Adv Colloid Interface Sci ; 321: 103010, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37804661

RESUMEN

This article provides an in-depth analysis of various fabrication methods of bimetallic nanoparticles (BNP), including chemical, biological, and physical techniques. The review explores BNP's diverse uses, from well-known applications such as sensing water treatment and biomedical uses to less-studied areas like breath sensing for diabetes monitoring and hydrogen storage. It cites results from over 1000 researchers worldwide and >300 peer-reviewed articles. Additionally, the article discusses current trends, actionable recommendations, and the importance of synthetic analysis for industry players looking to optimize manufacturing techniques for specific applications. The article also evaluates the pros and cons of various fabrication methods, highlighting the potential of plant extract synthesis for mass production of capped BNPs. However, it warns that this method may not be suitable for certain applications requiring ligand-free surfaces. In contrast, physical methods like laser ablation offer better control and reactivity, especially for applications where ligand-free surfaces are critical. The report underscores the environmental benefits of plant extract synthesis compared to chemical methods that use hazardous chemicals and pose risks to extraction, production, and disposal. The article emphasizes the need for life cycle assessment (LCA) articles in the literature, given the growing volume of research on nanotechnology materials. This article caters to researchers at all stages and applies to various fields applying nanomaterials.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Nanotecnología/métodos , Catálisis , Extractos Vegetales
14.
Sci Adv ; 9(36): eadi3441, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37672582

RESUMEN

Fluorescence-guided intervention can bolster standard therapies by detecting and treating microscopic tumors before lethal recurrence. Tremendous progress in photoimmunotherapy and nanotechnology has been made to treat metastasis. However, many are lost in translation due to heterogeneous treatment effects. Here, we integrate three technological advances in targeted photo-activable multi-agent liposome (TPMAL), fluorescence-guided intervention, and laser endoscopy (ML7710) to improve photoimmunotherapy. TPMAL consists of a nanoliposome chemotherapy labeled with fluorophores for tracking and photosensitizer immunoconjugates for photoimmunotherapy. ML7710 is connected to Modulight Cloud to capture and analyze multispectral emission from TPMAL for fluorescence-guided drug delivery (FGDD) and fluorescence-guided light dosimetry (FGLD) in peritoneal carcinomatosis mouse models. FGDD revealed that TPMAL enhances drug delivery to metastases by 14-fold. ML7710 captured interpatient variability in TPMAL uptake and prompted FGLD in >50% of animals. By combining TPMAL, ML7710, and fluorescence-guided intervention, variation in treatment response was substantially reduced and tumor control improved without side effects.


Asunto(s)
Neoplasias Peritoneales , Animales , Ratones , Neoplasias Peritoneales/terapia , Inmunoterapia , Fototerapia , Nanotecnología , Sistemas de Liberación de Medicamentos , Liposomas
15.
Sensors (Basel) ; 23(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37687982

RESUMEN

Prostate cancer (PC) is one of the major causes of death among elderly men. PC is often diagnosed later in progression due to asymptomatic early stages. Early detection of PC is thus crucial for effective PC treatment. The aim of this study is the simultaneous highly sensitive detection of a palette of PC-associated microRNAs (miRNAs) in human plasma samples. With this aim, a nanoribbon biosensor system based on "silicon-on-insulator" structures (SOI-NR biosensor) has been employed. In order to provide biospecific detection of the target miRNAs, the surface of individual nanoribbons has been sensitized with DNA oligonucleotide probes (oDNA probes) complementary to the target miRNAs. The lowest concentration of nucleic acids, detectable with our biosensor, has been found to be 1.1 × 10-17 M. The successful detection of target miRNAs, isolated from real plasma samples of PC patients, has also been demonstrated. We believe that the development of highly sensitive nanotechnology-based biosensors for the detection of PC markers is a step towards personalized medicine.


Asunto(s)
MicroARNs , Nanotubos de Carbono , Ácidos Nucleicos , Neoplasias de la Próstata , Anciano , Masculino , Humanos , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética , Nanotecnología
16.
Sci Bull (Beijing) ; 68(21): 2564-2573, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37718236

RESUMEN

The conformational motions of enzymes are crucial for their catalytic activities, but these fluctuations are usually spontaneous and unsynchronized and thus difficult to obtain from ensemble-averaged measurements. Here, we employ label-free single-entity electrochemical measurements to monitor in real time the fluctuating enzymatic behavior of single catalase molecules toward the degradation of hydrogen peroxide. By probing the electrochemical signals of single catalase molecules at a carbon nanoelectrode, we were able to observe three distinct current traces that could be attributed to conformational changes on the sub-millisecond timescale. Whereas, nearly uniform single long peaks were observed for single catalase molecules under a moderate magnetic field due to the restricted conformational changes of catalase. By combining high-resolution current signals with a multiphysics simulation model, we studied the catalytic kinetics of catalase with and without a magnetic field, and further estimated the maximum catalytic rate and conformational transition rate. This work introduces a new complementary approach to existing single-molecule enzymology, giving further insight into the enzymatic reaction mechanism.


Asunto(s)
Nanotecnología , Catalasa , Electroquímica , Conformación Molecular , Catálisis
17.
Nat Commun ; 14(1): 5622, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37699893

RESUMEN

Potato late blight caused by Phytophthora infestans is a devastating disease worldwide. Unlike other plant pathogens, double-stranded RNA (dsRNA) is poorly taken up by P. infestans, which is a key obstacle in using dsRNA for disease control. Here, a self-assembled multicomponent nano-bioprotectant for potato late blight management is designed based on dsRNA and a plant elicitor. Nanotechnology overcomes the dsRNA delivery bottleneck for P. infestans and extends the RNAi protective window. The protective effect of nano-enabled dsRNA against infection arises from a synergistic mechanism that bolsters the stability of dsRNA and optimizes its effective intracellular delivery. Additionally, the nano-enabled elicitor enhances endocytosis and amplifies the systemic defense response of the plants. Co-delivery of dsRNA and an elicitor provides a protective effect via the two aspects of pathogen inhibition and elevated plant defense mechanisms. The multicomponent nano-bioprotectant exhibits superior control efficacy compared to a commercial synthetic pesticide in field conditions. This work proposes an eco-friendly strategy to manage devastating plant diseases and pests.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Solanum tuberosum/genética , Endocitosis , Inhibición Psicológica , Nanotecnología , ARN Bicatenario
18.
Clin Oral Investig ; 27(11): 6677-6688, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37775587

RESUMEN

OBJECTIVES: Disinfection of alginate impression materials is a mandatory step to prevent cross-infection in dental clinics. However, alginate disinfection methods are time-consuming and exert a negative impact on accuracy and mechanical properties. Thus, this study aimed to prepare disinfecting agents (CHX and AgNO3) and silver nanoparticles reduced by a natural plant extract to produce a self-disinfecting dental alginate. METHODS: Conventional alginate impression material was used in this study. Silver nitrate (0.2% AgNO3 group) and chlorohexidine (0.2% CHX group) solutions were prepared using distilled water, and these solutions were later employed for alginate preparation. Moreover, a 90% aqueous plant extract was prepared from Boswellia sacra (BS) oleoresin and used to reduce silver nitrate to form silver nanoparticles that were incorporated in the dental alginate preparation (BS+AgNPs group). The plant extract was characterized by gas chromatography/mass spectrometry (GC/MS) analysis while green-synthesized silver nanoparticles (AgNPs) were characterized by UV-visible (UV-vis) spectroscopy and scanning electron microscopy (SEM). An agar disc diffusion assay was used to test the antimicrobial activity against Candida albicans, Streptococcus mutans, Escherichia coli, methicillin-resistant and susceptible Staphylococcus aureus strains, and Micrococcus luteus. Agar plates were incubated at 37 ± 1 °C for 24 h to allow microbial growth. Diameters of the circular inhibition zones formed around each specimen were measured digitally by using ImageJ software. RESULTS: Chemical analysis of the plant extract revealed the presence of 41 volatile and semi-volatile active compounds. UV-Vis spectrophotometry, SEM, and EDX confirmed the formation of spherical silver nanoparticles using the BS extract. CHX, AgNO3, and the BS+AgNPs modified groups showed significantly larger inhibition zones than the control group against all tested strains. BS+AgNPs and CHX groups showed comparable efficacy against all tested strains except for Staphylococcus aureus, where the CHX-modified alginate had a significantly higher effect. CONCLUSIONS AND CLINICAL RELEVANCE: CHX, silver nitrate, and biosynthesized silver nanoparticles could be promising inexpensive potential candidates for the preparation of a self-disinfecting alginate impression material without affecting its performance. Green synthesis of metal nanoparticles using Boswellia sacra extract could be a very safe, efficient, and nontoxic way with the additional advantage of a synergistic action between metal ions and the phytotherapeutic agents of the plant extract.


Asunto(s)
Alginatos , Nanopartículas del Metal , Alginatos/farmacología , Desinfección , Nitrato de Plata/farmacología , Nanopartículas del Metal/química , Agar/farmacología , Cromatografía de Gases y Espectrometría de Masas , Plata , Extractos Vegetales/farmacología , Staphylococcus aureus , Nanotecnología/métodos , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
19.
Chem Commun (Camb) ; 59(68): 10205-10225, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37555438

RESUMEN

The elements of the pnictogen group, known as the 15th (VA) family in the periodic table, including phosphorus (P), arsenic (As), antimony (Sb) and bismuth (Bi), have been widely used by alchemists to treat various diseases since ancient times and hold a pivotal position in the history of medicine, owing to their diverse pharmacological activities. Recently, with the development of modern nanotechnology, pnictogen group elements appear in a more innovative form, namely two-dimensional (2D) pnictogens (i.e. phosphorene, arsenene, and bismuthene) with a unique layered crystal structure and extraordinary optoelectronic characteristics, which endow them with significant superiority as a novel multifunctional photonic nanoplatform for cutting-edge precision treatment of various diseases. The puckered layer structure with ultralarge surface area make them ideal drug and gene delivery vectors that can avoid degradation and reduce target effects. The anisotropic morphology allows their easier internalization by cells and may improve gene transfection efficiency. Tunable optoelectronic characteristics endow them with excellent phototherapy performance as well as the ability to act as an optical switch to initiate subsequent therapeutic events. This review provides a brief overview of the properties, preparation and surface modifications of 2D pnictogens, and then focuses on its applications in cutting-edge precision treatment as a novel multifunctional photonic nanoplatform, such as phototherapy, photonic medicine, photo-adjuvant immunotherapy and photo-assisted gene therapy. Finally, the challenges and future development trends for 2D pnictogens are provided. With a focus on 2D pnictogen-based multifunctional photonic nanoplatforms, this review may also provide profound insights for the next generation innovative precision therapy.


Asunto(s)
Arsénico , Fototerapia , Fototerapia/métodos , Nanotecnología/métodos
20.
J Control Release ; 360: 564-577, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37442200

RESUMEN

Phototherapies, mainly including photodynamic and photothermal therapy, have made considerable strides in the field of cancer treatment. With the aid of phototherapeutic agents, reactive oxygen species (ROS) or heat are generated under light irradiation to selectively damage cancer cells. However, sole-modality phototherapy faces certain drawbacks, such as limited penetration of phototherapeutic agents into tumor tissues, inefficient ROS generation due to hypoxia, treatment-induced inflammation and resistance of tumor to treatment (e.g., high levels of antioxidants, expression of heat shock protein). Gas therapy, an emerging therapy approach that damages cancer cells by improving the level of certain gas at the tumor site, shows potential to overcome the challenges associated with phototherapies. In addition, with the rapid development of nanotechnology, gas-assisted phototherapy based on nanomedicines has emerged as a promising strategy to enhance the treatment efficacy. This review summarizes recent advances in gas-assisted phototherapy and discusses the prospects and challenges of this strategy in cancer phototherapy.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Especies Reactivas de Oxígeno/metabolismo , Fototerapia , Neoplasias/terapia , Neoplasias/patología , Nanotecnología , Fármacos Fotosensibilizantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA